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Abstract

In the present work, the onset of convection in a two-dimensional horizontal porous layer saturated with cold water is studied numer-
ically, using the linear stability analysis. The Dirichlet-Dirichlet, Neumann-Dirichlet and Dirichlet-Neumann thermal boundary condi-
tions are applied on the horizontal walls of the cavity, respectively. Both the infinite and the confined layers are investigated. The finite
element method is used to solve the linearized perturbation equations. The onset of convection is found to be dependent of the aspect
ratio of the cavity, 4 and the inversion parameter, y. The effect of these control parameters is studied for both infinite and finite layer
cases. The effect of various thermal boundary conditions imposed on the horizontal layer is also investigated in this study.
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1. Introduction

Natural convection through porous media has been
studied extensively in the past. A review of the literature
(see for instance Nield and Bejan [1]) indicates that most
of the studies were done with Boussinesq fluids, i.e., fluids
exhibiting linear density as a function of temperature.
However, water is known to feature an anomalous den-
sity—temperature relationship, the so-called density inver-
sion phenomenon, having a maximum density at a
temperature near 4 °C. In the past three decades, consider-
able interest has been focused on problems with density
inversion because of applications in many fields such as
geophysics and astrophysics.

Most works carried so far are concerned with the natu-
ral convection of pure cold water in a vertical enclosure.
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Watson [2] seems to be the first to demonstrate numerically
convective flow reversals of cold water confined in a cavity
differentially heated from the sides. Since this pioneering
numerical work, this problem has received considerable
attention. Representative work includes Vasseur and
Robillard [3], Seki et al. [4,5], Inaba and Fukuda [6,7].
All these studies indicate that taking the density anomaly
into account leads to peculiar behaviours, such as multicel-
lular flow structure and heat transfer minima. A few studies
were also concerned with the onset of motion in a horizon-
tal fluid layer heated from below. Veronis [8] obtained, on
the basis of the linear stability theory, the critical Rayleigh
numbers in a fluid layer with 0 °C imposed at its bottom.
Seki et al. [9,10] investigated rigid-rigid and free-rigid sys-
tems. The Galerkin’s method was used by Merker et al.
[11] to study instabilities in a cold layer of fluid. The
non-linear stability was investigated by Malkus and Vero-
nis [12].

A few studies have also been concerned with the
problem of stability in a horizontal porous layer saturated
with cold water. Using a cubic density—temperature
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Nomenclature

A aspect ratio, L'/H’
Am modified aspect ratio, L'/,
H overall height of the layer

h...  height of the unstable layer in pure conduction
thermal conductivity of the saturated porous
medium

L width of the porous layer

q imposed heat flux on the horizontal boundaries

R Darcy Rayleigh number, gKH' AT ?/(av)

R standard Rayleigh number for linear convec-

tion, gKH'BAT'[(av)
R modified Darcy Rayleigh number, Eq. (6)

t dimensionless time, 7'/(aH /o)

AT temperature difference based on the overall
depth of the layer in pure conduction, ¢’H'/k

T, . temperature corresponding to the density pumax.
(T =4°C)

(x,y) dimensionless coordinate system, x'/H’, y'/H'

(u,v)  dimensionless velocity terms, u'/(a/H"), v'/(o/
H)

Greek symbols

o thermal diffusivity, k/(pmaxC)y

p thermal expansion coefficient, Eq. (13) (°C)~!

N coefficient, Eq. (1) (°C)~>

inversion parameter, 2(7,,,, — 71)/AT’
wavelength

eigenvalue

heat capacity ratio, (pmaxc)p/(pmaxaf
kinematic viscosity of fluid

0 density of fluid

Pmax ~ Maximum density

(pmaxC)r heat capacity of fluid

(pPmaxC)p heat capacity of saturated porous medium
4 dimensionless stream function, ¥’/o

= Q N2

Subscripts
c critical value at incipient convection
m modified value

Superscript
! stands for dimensional variable

relationship, Sun et al. [13] were the first to predict the
onset of convective flow. It was demonstrated experimen-
tally by Yen [14] that the onset of motion, in a porous med-
ium saturated with cold water, depends on parameters
which are function of the boundary temperature. Relying
on the linear stability theory, the effect of non-linear den-
sity on convection, in a porous medium has been con-
ducted by Patil [I15], for both Brinkman and Darcy
models. A numerical study of two-dimensional natural
convection in a horizontal porous layer heated from below
and saturated with cold water has been performed by Blake
et al. [16]. It was found that numerical results agree with
linear stability results regarding the onset of convection.
A theoretical investigation of the onset of thermal instabil-
ities in the vicinity of the density maximum in the presence
of a time-dependent non-linear mean temperature distribu-
tion within a porous layer was investigated by Poulikakos
[17]. It was demonstrated that the dimensionless onset time
decreases and the critical wave number increases as the
Rayleigh number increases. Zhang [18] investigated numer-
ically the problem of penetrative convection in a horizontal
porous layer saturated with cold water. The existence of
subcritical convection was demonstrated. The onset of con-
vection in a horizontal porous cavity has been studied
recently by Mamou et al. [19], on the basis of the Brink-
man-extended Darcy model. The existence of multiple solu-
tions for a given range of the governing parameters was

demonstrated numerically, solving the full governing equa-
tions. Also, it was found that, when the upper stable layer
extends over more than the half depth, subcritical convec-
tion is possible.

More recently, Mahidjiba et al. [20,21] studied the onset
of convection in the case of a horizontal anisotropic porous
layer of finite/infinite lateral extent, saturated with cold
water. The existence of obliquely elongated convective
cells, evenly distributed for the infinite layer was demon-
strated. These cells result from the fusion of the primary
convective cells (near lower boundary) and the secondary
cells (near upper boundary).

The main purpose of this work is to study the onset of
convection of an horizontal isotropic porous layer satu-
rated with water at temperature near 4 °C. The influence
of mixed boundary conditions applied on the horizontal
walls of this layer is investigated. Such a condition, which
can be encountered in many practical situations, has not
been considered in the past, particularly in the case on
the penetrative convection. Results obtained by linear sta-
bility analysis of finite and infinite layer for this case are
presented.

2. Mathematical formulation

The problem under consideration is illustrated in Fig. 1.
Uniform temperature 7" is imposed on one of the two
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q' =-keT'[oy], or T
Y
stable layer
f Tr;a_x pmax x’
unstable layer o
T, or qg'=-koT'[oy' P

L

L]

\ 4

Fig. 1. Geometry of the physical problem: pure conduction conditions.

horizontal boundaries (Dirichlet condition) while a constant
heat flux ¢’ is applied to the other one (Neumann condition).
The two vertical boundaries are subject to either adiabatic
or periodic conditions respectively (those last conditions
to be defined later), according to the type of layer (confined
or unconfined) considered. When the temperature corre-
sponding to the maximum density 7, is somewhere
between the two horizontal boundaries, temperature and
density profiles corresponding to pure conduction heat
transfer take the form given in Fig. 1 and the vertical posi-
tion of the maximum density, pn.x defines a separating line
between a lower unstable region and a superposed stable
one. It is to be noted that at, incipient convection, the
dimensional temperature field obtained when only one of
the horizontal boundaries is subject to a Dirichlet condi-
tions (a Neumann condition being applied on the other
one), remains identical in absolute value to the temperature
field with Dirichlet boundary conditions imposed on both
boundaries, uniform temperature 77, and 7 being obtained
on upper and lower boundaries respectively.

The saturated porous layer is assumed to follow the
Darcy law. The fluid density varies with temperature
according to a parabolic relationship of the form

m:_ﬁl(T/_Tinax)z (1)
pmax

with 77, =3.98°C and f, =8x 10°(°C) 2. The above

relation was found to hold to within 4% over the range

0-8 °C, according to Moore and Weiss [22].

Since ¢' = —k0OT'/dy’ on the boundary subject to a Neu-
mann condition, the pure conduction temperature field
gives
q/H/

2

- e

with the characteristic steady state temperature AT’ being

positive or negative, according to the direction of ¢’ (¢’
considered positive when upwards).

= AT

T, —T, =

The particular relationship, Eq. (1), between density and
temperature gives rise to two distinct cases that are to be
considered in the present paper: Neumann condition
applied to the upper boundary (case labelled ND) or
applied to the lower boundary (case labelled DN), the other
horizontal boundary being subject to a Dirichlet condition.

The dimensionless temperature is defined as follows:

T —T,
T=—-=F D
AT (ND) (3a)
T —T,
T=—0y2+1 D
a7~ 1 (DN) (3b)

This choice provides the same dimensionless tempera-
ture profile for both cases ND and DN with the dimension-
less Neumann condition d7/0y = 1 applied on the relevant
horizontal boundary.

Using H', o = k/(pmaxC)p, o/ H', t'/(6 H'*/ ) as respective
scales for length, stream function, velocity and time, the
dimensionless equations for momentum and energy
(Mahidjiba et al. [20,21]) are

oy oY oT

—+——=R(y—2T)— 4
a2 e (v ) (4)
or ot or T T )
a T dy w2 02

where the stream function ¥ is related to the velocity by the
usual relations u = 0¥/dy and v = —0W/0x.

As usual, in deriving the governing equations (4) and
(5), use has been made of the Boussinesq approximation.
This latter is valid provided that density changes Ap remain
small in comparison of p..x (incompressible fluid) and
temperature differences are small enough such that other
properties of the saturated porous medium can be consid-
ered constant (see for instance Refs. [8,17]).

In the above equations, R = gKH f;AT*/(av) is the
Rayleigh number and y=2(7,, —Ty)/AT" (ND) or
y=2(T,.. — Ty)/AT" + 2 (DN) is the inversion parameter.

max



A. Mahidjiba et al. | International Journal of Heat and Mass Transfer 49 (2006) 2820-2828 2823

Together with the aspect ratio 4 = L'/H’ defined in Fig. 1,
they are the governing parameters of the present problem.

Whatever is the choice of the dimensional temperature
imposed on one of the boundaries, the inversion parameter
determines in pure steady state conduction the vertical
position of 77, i.e., the vertical position of the maximum
density, with /,,,, the dimensionless thickness of the unsta-
ble layer, being equal to y/2.

For the interpretation of the results, it is more appropri-
ate to used a modified Rayleigh number R, and a modified
aspect ratio, A, both based on the depth 4 of the unsta-
ble layer and on the difference of density Ap,, across that
layer, as defined for pure conduction heat transfer
(Fig. 1). Thus the physical definition of the modified Ray-
leigh number remains the same

/
Ry = g o B0 (©)
ov pmax
although its mathematical expression changes, according to
the vertical position of the maximum density in pure con-
duction. When the maximum density p.. lies between

the two horizontal boundaries (0 <7y < 2), we have
Poax = H'(7/2)

max

A m max 7
Mo _Pus=Pr_ g py 17 = a7

pmax pmax

When the maximum density is above the upper bound-
ary (y = 2), k. = H' and we have

max

Apm _pU_pL :pmax_pL_pmax_pU (8)

pmax pmax pmax pmax

According to relationship (1), we obtain

Apm

pmax

= By | (T = T = (T = T0'] 9)
which can be expressed as

Apm

max

= B 2T = TO(T, — T = (T, =T (10)

In pure conduction, AT" = Ty, — T4, so that expression
(8) gives

A _ g a2(y - 1) (1)

Therefore, from expression (7) and (11), the modified
Rayleigh number and aspect ratio are
0<7<2 Ra=R(3/2), An=4(/2)"
y=22, Rhn=R(>y—-1), 4An=4

(12a)
(12b)

On one hand, with y > 2, the quadratic term in 7 of Eq.
(4) becomes negligible and, since the thermal expansion
coefficient  used in linear convection is related to f;
(see, Robillard and Vasseur [3]) according to

B =2B1(TL = T (13)

we obtain with y > 2
KH' KH'BAT'
I poar(ry,,, — 1p) = - KPR
oy oy

Ry =Ry =

=R
(14)

R, being the standard Rayleigh number for a linear density
temperature relationship. This constitutes one of the
asymptotic limits of the results to be presented. Thus, with
y — oo the classic linear convection problem is obtained.
On the other hand, there exists also, another asymptotic
limit at y — 0, for which the (modified) Rayleigh number,
as defined in (6), remains constant. For this other asymp-
totic case, the effect of the upper boundary is vanishing
small, as it will be discussed later. It is to be noted that both
definitions of R, given in (12a,b) coincide when y =2.
Such modified Rayleigh number and aspect ratio have al-
ready been used in previous articles by Mamou et al. [19]
and Mabhidjiba et al. [20,21].

On all solid boundaries, hydrodynamic boundary condi-
tions are ¥ = 0, while the thermal boundary conditions are

x=1A4/2, 0T /ox =0 (15)
DD ND DN

y=-1/2 T=0 T=0 oT /oy =1 (16)

y=+41/2 T=1 0T/oy=1 T=1

Strictly speaking, the above conditions are those of a
confined layer. However, for the specific problem under
concern, namely the case of a Darcy porous layer, results
for the infinite layer are already contained in those of the
confined layer. As a matter of fact, they correspond to
the particular aspect ratio that minimizes the critical Ray-
leigh number. Alternatively, for the infinite layer, where the
flow structure consists of periodic counter rotating cells,
periodic boundary conditions in the x direction can be used
to study the incipient convection, the aspect ratio 4 being
limited to one wavelength /. Those periodic conditions
are defined as ¢(x,y) = ¢(x + 4.)y), where ¢ stands for
any physical variable and /. corresponds to the critical
wavelength.

3. Linear stability analysis

The method has been described in the past by Mahidjiba
et al. [20,21] and only a brief description is presented here.
The following transformations are introduced:

l[/(x’y) =¥Yr+ W(XJ’) (17)
T(x,y) = Tr + $(x,») (18)

where W =0 and Tg =y + 1/2 correspond to the rest
state and Y(x,y) and ¢(x,y) are the perturbed solutions
resulting from the convective effects.

3.1. Confined layer

Assuming separability, the steady perturbed solution
can be written as follows:
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Y(x,y) = o (x,y) and  (x,y) = doG(x,) (19)

where the amplitudes y/y and ¢, are small constants.

Substituting the rest-state solution and the small pertur-
bations, Egs. (17)—(19), into the governing equations (4)
and (5) and discarding the second order terms involving
the perturbations (at the beginning of convection, the
amplitude o and ¢, are close to zero), the following line-
arized set of governing equations is obtained:

al oG

bt 52 )F = RIDI (20)
oF G G

—lﬁoa)cz¢o<a)cz+a)}2) (21)

where f(y) =7 — 2y — 1.

The boundary conditions for F are similar to those of ¥,
except for y = 1/2 where F takes the zero value. The func-
tion G also follows the boundary conditions for 7.

The finite element method is employed to solve the
above set of equations. The details of this method were
already mentioned in the articles by Mahidjiba et al.
[20,21]. After calculation and rearrangement of the terms,
we obtain the following discretized set of linear equations

Yol Ky[{F} = R [B{ G} (22)
YolL{F} = ¢o[KI{G} (23)

where [B], [Ky], [K] and [L] are m X m square matrices with
m =4N,, N, being the total number of nodes, defined as
Ny = (Nex + 1)(Ngy, +1); Ne and N, are the numbers of
elements in x-direction and y-direction, respectively. The
corresponding elementary matrices can be computed from
the following integrals:

ON;

Bc:_ _j ; Qe
Bl == | 1) 5/ Nde,
[K]°= [ VN, -VN,de",

QB

24)

ON; (
L = —J.N.dQ°
IZ] o Ox Nidex,

ON; ON; ON; ON;
K¢ = b e A e A IV [0
Ky /QE(Gx 6x+6y 6y>

where N(y) are either the Lagrange interpolation functions
for a quadratic case or the Hermite interpolation functions
for the cubic case; {F} and {G} are solution vectors of
length m.

It is noted that boundary integrals, known as the natural
boundary conditions, vanish for the homogenous Dirichlet
and Neumann boundary conditions. Eliminating ¢o from
Egs. (22) and (23), we obtain the following eigenvalue
problem equation:

Vo([E] = ZIM){F} =0, with [E] = [K,] '[B][K] '[Z]

(25)

and where [I] is the identity matrix; 2 = 1/R represents the
eigenvalue and {F} the eigenvector.

The critical Rayleigh number for the onset of convection
is given by Rc = 1/Anax- The precision of the present numer-
ical procedure depends, naturally, on the grid number.

3.2. Infinite layer

Egs. (19), for the infinite layer case, become

Yix,y) =y F(y) and  ¢(x,y) = ¢ G(v) (26)
where w is the wavenumber defined as w = 2n/Ac and Ac is
the critical wavelength. Substituting the above expressions
into the governing equations (4) and (5) and discarding the
second order terms, the linearized governing equations are
obtained as follows:

. OF OF .
WO (—aa)zF + 160]9@ =+ Ca—y2> = l(URd)Of(y)G (27)
. o’G
oy F = ¢, (sz - a_yz) (28)

40 47[2 ________
35
L A A
Rme Nield [23] == —— ———————————1
DN
I | | | | |
(a) 4
5

Nield [23]
Amc 3

DD

1 L l l
0 1 2 3 4

(b) 14

Fig. 2. Infinite layer: effect of the inversion parameter on (a) critical
Rayleigh number, R,c and (b) Critical wavelength, A,c.
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While following the same process as for the confined
layer case, we find the same eigenvalue problem equation.
However, the matrices are now given by

[B]e = —iw f(y)NjNi der,
QE

[L]e = ICO/QF NjNidQe,

29
[K]"_/ AL >
"o oy oy TN
dN; oN,
K = 2NN, + L ) dee
K] /Qg(awNjN,—i—ay ay)d

4. Results and discussion

All linear stability results at a specific y and a given set of
boundary conditions, DD, ND and DN, may be deduced
from a single curve R, c versus 4,,, as computed from a
confined layer containing a single incipient convective cell

2825

in the x-direction. The minimum R,,c obtained from the
curve is the critical Rayleigh number of an infinite layer
and the corresponding A, represents the half wavelength
Amc- For the case of a confined layer, critical Rayleigh
numbers for n cells are obtained by scaling appropriately
the single cell curve R,,c versus A4,,.

4.1. Infinite layer

The critical Rayleigh number R,,c, defined in expres-
sions (12a) and (12b) and the corresponding wavelength
Amc are given as functions of the inversion parameter in
Fig. 2a. As mentioned earlier, The curve labelled (DN)
stands for the Neumann condition applied on the lower
boundary and the Dirichlet condition applied on the upper
boundary. Those conditions are interchanged between the
two boundaries for the curve labelled (ND). The third
curve (DD) for Dirichlet condition on both horizontal
boundaries, is presented for comparison purpose. An
asymptotic behaviour is found for y > 2, for which the

-

-

H

T

(a) (DD)

(ND)

(DN)

Fig. 3. Contour lines of the stream function and temperature profile for an infinite layer, for the three types of boundary conditions considered: (a) y =

1/3, (b) y=1/2 and (c) y = 2.
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e

i

(c) (DD) (ND)

(DN)

Fig. 3 (continued)

standard convection results (p and T linearly related) is
recovered. In Fig. 2a, asymptotic values for R ¢ are indi-
cated by the two dashed lines with R, =4n> for the
(DD) curve. The two other curves, (ND) and (DN) tend
toward the same limit R,,c = 27.19, as expected from sym-
metry considerations when p is linearly related to 7. This
critical Rayleigh number is in agreement with the value
R,c =27.10 as reported by Nield [23]. With y decreasing
toward 2, the quadratic source term in Eq. (4) exerts its
effect, either by decreasing (DD, DN) or increasing (ND)
the critical Rayleigh number. At y = 2, the abrupt change
in behaviour characterizing all the curves corresponds to
the change in the mathematical definition of R,c, Eq.
(12a,b). With y decreasing below 2.0, the 4 °C isotherm
(assuming a pure conduction temperature field), which
appears first near the upper boundary, moves downward,

creating an upper stable layer. A drastic drop characterizes
all three curves at first, followed by a slight increase to an
asymptotic value. Below y =~ 1, the same asymptotic value
Ryc =29.50 is reached for the curves (DD) and (ND).
The curve (DN) reaches a much lower value Ry,c = 15.04
at y ~ 0.8. This last asymptotic behaviour relies on the fact
that, for y decreasing from 2, the influence of the upper
boundary on the flow behaviour at incipient convection is
gradually reduced with the presence of the upper stable
layer. At y < ~ 1 (or ~0.8), that influence becomes negligi-
ble. The threshold for incipient convection depends solely
on the thickness of the unstable lower layer and on the den-
sity difference across that layer, both physical parameters
on which R, c is based. Thus, R,,c becomes constant and
the curves (DD) and (ND), which differ only by their upper
thermal boundary conditions, reach the same asymptotic
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value. The abrupt change of slope observed at y =2, in
Fig. 2a,b is merely due to the change of definition of both
the modified Rayleigh number and wavelength, Eq.
(12a,b). This approach allows one to obtain a finite asymp-
totic value when y tends toward zero.

It is observed in Fig. 2b that the critical wavelength A,,,c
increases quite markedly with the occurrence of a stable
upper layer, i.e., with y decreasing from 2. This is due to
the fact that there is room offered by the stable layer for
the expansion of the convective cells generated in the lower
unstable layer. This behaviour is obvious in Fig. 3 which
represents, for one wavelength of the infinite layer, incipi-
ent flow field (above) together with corresponding pertur-
bations of the pure conduction temperature field (below).
Those flow and temperature fields are represented respec-
tively by streamlines and isotherms. For instance, in
Fig. 3a, y = 1/3 indicates that the unstable layer is limited
to H'/6. Clearly for all the three cases DD, ND and DN,
the flow field defining the lower cells extends in the upper
direction beyond H'/6. The same behaviour is manifest
for the set of flow fields shown in Fig. 3b for which the
unstable layer thickness is H'/4. In Fig. 3a,b, the cases with
Neumann boundary conditions applied to the lower
boundary (DN) have a relatively larger critical wavelength
and penetrate deeper into the stable layer.

For the three cases of Fig. 3c (y = 2), there is no stable
layer and the minimum density occurs at the upper bound-
ary. For both cases ND and DN, the Neumann boundary
condition gives rise to a large critical wavelength, in con-
formity with Fig. 2b.

4.2. Confined layer

The effect of lateral confinement on the critical Rayleigh
Ry cisillustrated in Fig. 4 for y = 1/2. The curve Ry, c versus

36

32 DD (or ND)

28

RmC 24+

20

16~

12 1 | | 1 1 1

Fig. 4. Effect of the aspect ratio 4,,, for a confined layer, on the critical
number R,c for the three types of boundary conditions considered
(r=1/2).

A, shows a series of peaks distributed along the abscissa A,.
Each peak indicates that a new convective cell near the lower
boundary is added to the flow field, with increasing A4,,. The
minimum value of R,c between two successive peaks
corresponds to the critical Rayleigh for the infinite layer.
Those minimum values (29.05 and 15.04) shown by the
dashed lines are in fact the ones shown at y = 1/2 for DD
or ND and DN respectively in Fig. 2a. It is to be noted that
the flow field at those minimum values of R,,¢ is identical to
the half wavelength of the flow patterns shown in Fig. 3, this
half wavelength being repeated in the horizontal direction
inside the cavity in accordance with the value of A4,,,.

5. Conclusion

Conditions at which incipient convection occurs have
been studied for the case of a cold water saturated porous
medium subject to a vertical temperature gradient. The
layer of infinite extent as well as the laterally confined layer
have been considered. Mixed Neumann and Dirichlet ther-
mal boundary conditions were imposed on the horizontal
boundaries, lateral boundaries for the confined layer being
adiabatic.

An inversion parameter y has been used to delimitate the
part of the total depth occupied by the unstable layer. Crit-
ical Rayleigh numbers defining the threshold of convection
have been established as functions of y for the case of the
infinite layer. Results indicate that an asymptotic situation
is reached when y < 1, for which the upper boundary con-
ditions do not influence anymore the convective threshold.
It has also been found that, with y increasing above 2, the
solutions reach asymptotically the classical case of a fluid
with a linear density temperature relationship.
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